Home

Welcome to the Mobility Information Engineering Lab (MIE) at ETH Zürich. The MIE Lab is part of the Chair of Geoinformation Engineering at the Institute of Cartography and Geoinformation (IKG).

Our research is centered around analyzing spatio-temporal aspects of human mobility and developing methods to increase its sustainability with information and communication technology (ICT).

Research

We develop innovative computational methods for the analysis, simulation & prediction of individual mobility, with the goal of making mobility sustainable.

For this, we combine competences and methods from diverse fields such as Geographic Information Science (GISc), Artificial Intelligence (AI), Data Mining, Transportation Modeling, Spatial Cognition, and Learning Analytics. Our interests span from location-based services (LBS), trajectory data analysis, agent-based models and simulation, algorithms and models for spatio-temporal information, to mobile learning visualizations and learning analytics.

In our research we also place great value on reproducibility and transparency of our work. For this purpose we publish our code on the MIE Lab Github page, and for example provide the Trackintel Python package to standardise preprocessing steps of mobility data.

Read more about our research in the following core areas:

Sustainable Mobility

Location-based services to support people in mobility choices, MaaS offers, sustainability assessments

Computational Methods

Spatio-temporal machine learning, analysis, simulation & prediction of human mobility, user profiling and personalization

Mobility & Energy

Vehicle-2-grid strategies, smart charging, impact of drivetrain technologies, spatio-temporal assessments of technology penetration

News

New Paper on Understanding Complexity of Urban Traffic Prediction

A new paper titled “Enhancing Deep Learning-Based City-Wide Traffic Prediction Pipelines Through Complexity Analysis” was published in the journal Data Science for Transportation. Our research introduces a novel metric that allows for the pre-modelling complexity evaluation of traffic prediction tasks. This metric, designed for computational efficiency and to be architecture-agnostic, assists in choosing the most …

Spatial Nudging framework presented at COSIT 2024 conference

A new paper, titled “Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories”, was presented at the 16th International Conference on Spatial Information Theory (COSIT 2024). This paper introduces the Spatial Nudging framework—a theory-driven approach that maps out nudging strategies in the mobility domain, with a focus on cycling. The framework integrates physical and …

Ayda Grisiute presented at CRBAM 2024

Ayda Grisiute gave a talk at the 8th Cycling Research Board Meeting (CRBAM). The presentation, titled “Conceptualizing Spatial Nudging: A Theoretical Framework for Integrating Interventions to Promote Cycling“ introduced Spatial Nudging framework that delineates nudging practices in the mobility domain and offers a theoretically integrated perspective on promoting cycling through spatial interventions. In addition, Ayda …